The development of the concept of what we call science is arguably the most dramatic intellectual event in history, for it utterly changed both the way in which men viewed the world and provided them with the means to mould it ever more completely to their will.
Science is the opposite of “by guess and by God”. It is the process of not only knowing that something has worked before and replicating the event or process to achieve the same result, but of understanding the process behind an event or process.
The classic scientific experiment involves the generation of an hypothesis to be tested (for example, the behaviour of falling objects) or a defined field to be investigated (for example, an animal’s behaviour), the creation of the means of doing so and a strict observance of the rules by which the experiment is to be conducted and meticulous recording of data. That in essence is the scientific method, although in practice science is far from being as neat and regular as that. Nonetheless, it does encapsulate what science is supposed to be about: the rigorous observation and rational interpretation of what is rather than what the mind might fancy to be the case. It is inductive rather than deductive.
The beginnings of the scientific mentality can be found in the minds of two 13th Century Englishmen, the Franciscan Roger Bacon (c1214-1292) and Robert Grossteste (c1168-1253), Chancellor of Oxford then Bishop of Lincoln. Both saw the importance of experimentation and observation, Bacon advocated mathematics as the sure foundation of science while Grosseteste anticipated the idea of the scientific hypothesis. Grossteste was also the first to understood the value of falsification, namely, although any number of observed events cannot prove beyond doubt that something is generally true it can be proved false by a single case which shows it to be false. There are difficulties with the principle of falsification philosophically but it is, in Practice, a most useful tool for scientists.
Another important intellectual tool for the scientist was developed in the fourteenth Century by the Franciscan, William of Ockham. Ockham formulated the principle of parsimony which we know today as Ockham’s Razor. This is commonly expressed as “entities are not to be multiplied beyond necessity” or, more bluntly, always choose the simplest explanation for something unless there is good reason not to. Apart from being philosophically important, this dictum is immensely valuable as a guide for scientists, especially those engaged in the “hard” sciences of physics and chemistry, where the simplest explanation has often been found to be the correct one.
Roger Bacon, Grossteste and William of Ockham were also responsible for a substantial amount of important philosophy related to the other aspects of the physical world and to metaphysics. In addition, Ockham was a radical political theorist who fought the conciliar case in the long schism in the papacy (which straddled the fourteenth and fifteenth Centuries), arguing that authority within the Church should not rest solely with the Pope but be delegated in part to a council of the Church.
At the beginning of the Seventeenth Century Francis Bacon moved the idea of the scientific method forward in his Novum Organum (1620), in which he laid out the classic version of scientific method and reinforced the ideas of induction and the importance of falsifiability (Bacon stands as the first in the long line of important British empirical philosophers). Bacon was also responsible for the re-classification of sciences to something approaching their modern divisions in his Advancement of Learning (1625) and argued vigorously for the separation of reason and revelation.
On the practical science side there is William Gilbert with his work on magnetism (published in his De Magneto 1600), who was one of the first men, even perhaps the first, known to have conducted a controlled experiment, that is, one in which the experiment is entirely artificial and can be exactly repeated. It is the difference between simply watching falling objects which fall without human intent and creating a situation where falling objects can be observed repeatedly under the same conditions.
It would be a vainglorious exaggeration to say that science was the invention of England, but they played a great part, arguably the greatest part, in its creation.